Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Act Health ; : 1-9, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663845

RESUMEN

BACKGROUND: To evaluate the influence of previous physical activity (PA) during childhood, adolescence, and current PA practice on the production of antibodies and inflammatory response between the first and second doses of the COVID-19 vaccine. METHODS: Fifty-nine men and 56 women were evaluated before the first vaccine, and 12 weeks later, blood samples were taken to quantify production of anti-severe acute respiratory syndrome coronavirus-2 immunoglobulin G antibodies and cytokines. Previous PA during childhood and adolescence was self-referred, and current PA was assessed using the International Physical Activity Questionnaire. RESULTS: A positive and significant association was observed only between PA practice during adolescence and an increase in antibody production in adulthood (ß = 2012.077, 95% confidence interval, 257.7953-3766.358, P = .025). Individuals who practiced PA during adolescence showed higher production of antibodies between the first and second vaccine dose compared to nonpractitioners (P = .025) and those that accumulated ≥150 minutes per week of current moderate-vigorous PA (MVPA), and presented higher antibody production in relation to who did <150 minutes per week of MVPA (P = .046). Individuals that were practitioners during childhood produced higher G-CSF (P = .047), and those that accumulated ≥150 minutes per week of current MVPA demonstrated lower IP-10 levels (P = .033). However, PA practitioners during adolescence presented higher G-CSF (P = .025), IL-17 (P = .038), IL-1RA (P = .005), IL-1ß (P = .020), and IL-2 (P = .026) levels. CONCLUSION: Our results suggest that adults that accumulated at least 150 minutes of MVPA per week or practiced PA during adolescence developed an improved immune and inflammatory response against COVID-19 vaccination.

2.
Viruses ; 15(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37766309

RESUMEN

The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.

3.
Front Cell Dev Biol ; 11: 1116805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866275

RESUMEN

Disruption of the epigenetic program of gene expression is a hallmark of cancer that initiates and propagates tumorigenesis. Altered DNA methylation, histone modifications and ncRNAs expression are a feature of cancer cells. The dynamic epigenetic changes during oncogenic transformation are related to tumor heterogeneity, unlimited self-renewal and multi-lineage differentiation. This stem cell-like state or the aberrant reprogramming of cancer stem cells is the major challenge in treatment and drug resistance. Given the reversible nature of epigenetic modifications, the ability to restore the cancer epigenome through the inhibition of the epigenetic modifiers is a promising therapy for cancer treatment, either as a monotherapy or in combination with other anticancer therapies, including immunotherapies. Herein, we highlighted the main epigenetic alterations, their potential as a biomarker for early diagnosis and the epigenetic therapies approved for cancer treatment.

4.
Int J Biol Macromol ; 119: 306-311, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30041038

RESUMEN

Due mainly to their high level of affinity and specificity, therapeutic monoclonal antibodies (mAbs) have been frequently selected as treatment for cancer, autoimmune or chronic inflammatory diseases. Despite the increasing number of mAbs and related products in the biopharmaceutical market, they are still expensive, can cause undesired side effects, and eventually cause resistance. Antibody engineering, which emerged to overcome limitations faced by mAb therapy, has supported the development of modified mAbs for immunotherapy. As part of this approach, researchers have invested in obtaining antibody fragments, as well as in Fc region modifications, since interactions with Fc receptors influence an antibody's half-life and mechanism of action. Thus, Fc engineering results in antibodies with more desirable characteristics and functions for which they are intended, creating "fit-for-purpose" antibodies with reduced side effects. Furthermore, aglycosylated antibodies, produced in bacterial cultivation, have been an alternative to create new effector functional human immunotherapeutics, while reducing mAb therapy costs. This review highlights some features that enhance mAb performance, related to the improvement of antibody half-life and effector responses by both Fc-engineering and glycoengineering.


Asunto(s)
Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/farmacocinética , Fragmentos Fc de Inmunoglobulinas/genética , Ingeniería de Proteínas , Animales , Anticuerpos Monoclonales/química , Afinidad de Anticuerpos , Carbohidratos/química , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Inmunoglobulina G/farmacología , Unión Proteica , Receptores Fc/química , Receptores Fc/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...